3.9.42 \(\int \frac {A+B \tan (e+f x)}{(a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{5/2}} \, dx\) [842]

3.9.42.1 Optimal result
3.9.42.2 Mathematica [A] (verified)
3.9.42.3 Rubi [A] (verified)
3.9.42.4 Maple [A] (verified)
3.9.42.5 Fricas [A] (verification not implemented)
3.9.42.6 Sympy [F]
3.9.42.7 Maxima [F(-2)]
3.9.42.8 Giac [F]
3.9.42.9 Mupad [B] (verification not implemented)

3.9.42.1 Optimal result

Integrand size = 45, antiderivative size = 269 \[ \int \frac {A+B \tan (e+f x)}{(a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{5/2}} \, dx=\frac {i A-B}{3 f (a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{5/2}}+\frac {4 i A-B}{3 a f \sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{5/2}}-\frac {(4 i A-B) \sqrt {a+i a \tan (e+f x)}}{5 a^2 f (c-i c \tan (e+f x))^{5/2}}-\frac {2 (4 i A-B) \sqrt {a+i a \tan (e+f x)}}{15 a^2 c f (c-i c \tan (e+f x))^{3/2}}-\frac {2 (4 i A-B) \sqrt {a+i a \tan (e+f x)}}{15 a^2 c^2 f \sqrt {c-i c \tan (e+f x)}} \]

output
-2/15*(4*I*A-B)*(a+I*a*tan(f*x+e))^(1/2)/a^2/c^2/f/(c-I*c*tan(f*x+e))^(1/2 
)+1/3*(4*I*A-B)/a/f/(a+I*a*tan(f*x+e))^(1/2)/(c-I*c*tan(f*x+e))^(5/2)-1/5* 
(4*I*A-B)*(a+I*a*tan(f*x+e))^(1/2)/a^2/f/(c-I*c*tan(f*x+e))^(5/2)+1/3*(I*A 
-B)/f/(a+I*a*tan(f*x+e))^(3/2)/(c-I*c*tan(f*x+e))^(5/2)-2/15*(4*I*A-B)*(a+ 
I*a*tan(f*x+e))^(1/2)/a^2/c/f/(c-I*c*tan(f*x+e))^(3/2)
 
3.9.42.2 Mathematica [A] (verified)

Time = 6.75 (sec) , antiderivative size = 152, normalized size of antiderivative = 0.57 \[ \int \frac {A+B \tan (e+f x)}{(a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{5/2}} \, dx=\frac {3 (A-i B)+(12 i A-3 B) \tan (e+f x)+3 (4 A+i B) \tan ^2(e+f x)+(8 i A-2 B) \tan ^3(e+f x)+(8 A+2 i B) \tan ^4(e+f x)}{15 a c^2 f (-i+\tan (e+f x)) (i+\tan (e+f x))^2 \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}} \]

input
Integrate[(A + B*Tan[e + f*x])/((a + I*a*Tan[e + f*x])^(3/2)*(c - I*c*Tan[ 
e + f*x])^(5/2)),x]
 
output
(3*(A - I*B) + ((12*I)*A - 3*B)*Tan[e + f*x] + 3*(4*A + I*B)*Tan[e + f*x]^ 
2 + ((8*I)*A - 2*B)*Tan[e + f*x]^3 + (8*A + (2*I)*B)*Tan[e + f*x]^4)/(15*a 
*c^2*f*(-I + Tan[e + f*x])*(I + Tan[e + f*x])^2*Sqrt[a + I*a*Tan[e + f*x]] 
*Sqrt[c - I*c*Tan[e + f*x]])
 
3.9.42.3 Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 273, normalized size of antiderivative = 1.01, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.156, Rules used = {3042, 4071, 87, 55, 55, 55, 48}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \tan (e+f x)}{(a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \tan (e+f x)}{(a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{5/2}}dx\)

\(\Big \downarrow \) 4071

\(\displaystyle \frac {a c \int \frac {A+B \tan (e+f x)}{(i \tan (e+f x) a+a)^{5/2} (c-i c \tan (e+f x))^{7/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 87

\(\displaystyle \frac {a c \left (\frac {(4 A+i B) \int \frac {1}{(i \tan (e+f x) a+a)^{3/2} (c-i c \tan (e+f x))^{7/2}}d\tan (e+f x)}{3 a}+\frac {-B+i A}{3 a c (a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{5/2}}\right )}{f}\)

\(\Big \downarrow \) 55

\(\displaystyle \frac {a c \left (\frac {(4 A+i B) \left (\frac {3 \int \frac {1}{\sqrt {i \tan (e+f x) a+a} (c-i c \tan (e+f x))^{7/2}}d\tan (e+f x)}{a}+\frac {i}{a c \sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{5/2}}\right )}{3 a}+\frac {-B+i A}{3 a c (a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{5/2}}\right )}{f}\)

\(\Big \downarrow \) 55

\(\displaystyle \frac {a c \left (\frac {(4 A+i B) \left (\frac {3 \left (\frac {2 \int \frac {1}{\sqrt {i \tan (e+f x) a+a} (c-i c \tan (e+f x))^{5/2}}d\tan (e+f x)}{5 c}-\frac {i \sqrt {a+i a \tan (e+f x)}}{5 a c (c-i c \tan (e+f x))^{5/2}}\right )}{a}+\frac {i}{a c \sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{5/2}}\right )}{3 a}+\frac {-B+i A}{3 a c (a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{5/2}}\right )}{f}\)

\(\Big \downarrow \) 55

\(\displaystyle \frac {a c \left (\frac {(4 A+i B) \left (\frac {3 \left (\frac {2 \left (\frac {\int \frac {1}{\sqrt {i \tan (e+f x) a+a} (c-i c \tan (e+f x))^{3/2}}d\tan (e+f x)}{3 c}-\frac {i \sqrt {a+i a \tan (e+f x)}}{3 a c (c-i c \tan (e+f x))^{3/2}}\right )}{5 c}-\frac {i \sqrt {a+i a \tan (e+f x)}}{5 a c (c-i c \tan (e+f x))^{5/2}}\right )}{a}+\frac {i}{a c \sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{5/2}}\right )}{3 a}+\frac {-B+i A}{3 a c (a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{5/2}}\right )}{f}\)

\(\Big \downarrow \) 48

\(\displaystyle \frac {a c \left (\frac {(4 A+i B) \left (\frac {3 \left (\frac {2 \left (-\frac {i \sqrt {a+i a \tan (e+f x)}}{3 a c^2 \sqrt {c-i c \tan (e+f x)}}-\frac {i \sqrt {a+i a \tan (e+f x)}}{3 a c (c-i c \tan (e+f x))^{3/2}}\right )}{5 c}-\frac {i \sqrt {a+i a \tan (e+f x)}}{5 a c (c-i c \tan (e+f x))^{5/2}}\right )}{a}+\frac {i}{a c \sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{5/2}}\right )}{3 a}+\frac {-B+i A}{3 a c (a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{5/2}}\right )}{f}\)

input
Int[(A + B*Tan[e + f*x])/((a + I*a*Tan[e + f*x])^(3/2)*(c - I*c*Tan[e + f* 
x])^(5/2)),x]
 
output
(a*c*((I*A - B)/(3*a*c*(a + I*a*Tan[e + f*x])^(3/2)*(c - I*c*Tan[e + f*x]) 
^(5/2)) + ((4*A + I*B)*(I/(a*c*Sqrt[a + I*a*Tan[e + f*x]]*(c - I*c*Tan[e + 
 f*x])^(5/2)) + (3*(((-1/5*I)*Sqrt[a + I*a*Tan[e + f*x]])/(a*c*(c - I*c*Ta 
n[e + f*x])^(5/2)) + (2*(((-1/3*I)*Sqrt[a + I*a*Tan[e + f*x]])/(a*c*(c - I 
*c*Tan[e + f*x])^(3/2)) - ((I/3)*Sqrt[a + I*a*Tan[e + f*x]])/(a*c^2*Sqrt[c 
 - I*c*Tan[e + f*x]])))/(5*c)))/a))/(3*a)))/f
 

3.9.42.3.1 Defintions of rubi rules used

rule 48
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp 
[(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] /; FreeQ[{ 
a, b, c, d, m, n}, x] && EqQ[m + n + 2, 0] && NeQ[m, -1]
 

rule 55
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(S 
implify[m + n + 2]/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^Simplify[m + 1]*( 
c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && ILtQ[Simplify[m + n + 
 2], 0] && NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[ 
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (SumSimplerQ[m, 1] ||  !SumSimp 
lerQ[n, 1])
 

rule 87
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[(-(b*e - a*f))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p 
+ 1)*(c*f - d*e))), x] - Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p 
+ 1)))/(f*(p + 1)*(c*f - d*e))   Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] 
/; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || Intege 
rQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ[p, n]))))
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4071
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Si 
mp[a*(c/f)   Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1)*(A + B*x), x], x 
, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c 
+ a*d, 0] && EqQ[a^2 + b^2, 0]
 
3.9.42.4 Maple [A] (verified)

Time = 0.39 (sec) , antiderivative size = 199, normalized size of antiderivative = 0.74

method result size
derivativedivides \(\frac {i \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \left (8 i A \tan \left (f x +e \right )^{6}-2 i B \tan \left (f x +e \right )^{5}-2 B \tan \left (f x +e \right )^{6}+20 i A \tan \left (f x +e \right )^{4}-8 A \tan \left (f x +e \right )^{5}-5 i B \tan \left (f x +e \right )^{3}-5 B \tan \left (f x +e \right )^{4}+15 i A \tan \left (f x +e \right )^{2}-20 A \tan \left (f x +e \right )^{3}-3 i \tan \left (f x +e \right ) B +3 i A -12 A \tan \left (f x +e \right )+3 B \right )}{15 f \,a^{2} c^{3} \left (i+\tan \left (f x +e \right )\right )^{4} \left (i-\tan \left (f x +e \right )\right )^{3}}\) \(199\)
default \(\frac {i \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \left (8 i A \tan \left (f x +e \right )^{6}-2 i B \tan \left (f x +e \right )^{5}-2 B \tan \left (f x +e \right )^{6}+20 i A \tan \left (f x +e \right )^{4}-8 A \tan \left (f x +e \right )^{5}-5 i B \tan \left (f x +e \right )^{3}-5 B \tan \left (f x +e \right )^{4}+15 i A \tan \left (f x +e \right )^{2}-20 A \tan \left (f x +e \right )^{3}-3 i \tan \left (f x +e \right ) B +3 i A -12 A \tan \left (f x +e \right )+3 B \right )}{15 f \,a^{2} c^{3} \left (i+\tan \left (f x +e \right )\right )^{4} \left (i-\tan \left (f x +e \right )\right )^{3}}\) \(199\)
parts \(-\frac {A \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \left (8 i \tan \left (f x +e \right )^{5}+8 \tan \left (f x +e \right )^{6}+20 i \tan \left (f x +e \right )^{3}+20 \tan \left (f x +e \right )^{4}+12 i \tan \left (f x +e \right )+15 \tan \left (f x +e \right )^{2}+3\right )}{15 f \,a^{2} c^{3} \left (i-\tan \left (f x +e \right )\right )^{3} \left (i+\tan \left (f x +e \right )\right )^{4}}-\frac {i B \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \left (2 i \tan \left (f x +e \right )^{5}+2 \tan \left (f x +e \right )^{6}+5 i \tan \left (f x +e \right )^{3}+5 \tan \left (f x +e \right )^{4}+3 i \tan \left (f x +e \right )-3\right )}{15 f \,a^{2} c^{3} \left (i-\tan \left (f x +e \right )\right )^{3} \left (i+\tan \left (f x +e \right )\right )^{4}}\) \(253\)

input
int((A+B*tan(f*x+e))/(a+I*a*tan(f*x+e))^(3/2)/(c-I*c*tan(f*x+e))^(5/2),x,m 
ethod=_RETURNVERBOSE)
 
output
1/15*I/f*(a*(1+I*tan(f*x+e)))^(1/2)*(-c*(I*tan(f*x+e)-1))^(1/2)/a^2/c^3*(8 
*I*A*tan(f*x+e)^6-2*I*B*tan(f*x+e)^5-2*B*tan(f*x+e)^6+20*I*A*tan(f*x+e)^4- 
8*A*tan(f*x+e)^5-5*I*B*tan(f*x+e)^3-5*B*tan(f*x+e)^4+15*I*A*tan(f*x+e)^2-2 
0*A*tan(f*x+e)^3-3*I*B*tan(f*x+e)+3*I*A-12*A*tan(f*x+e)+3*B)/(I+tan(f*x+e) 
)^4/(I-tan(f*x+e))^3
 
3.9.42.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 181, normalized size of antiderivative = 0.67 \[ \int \frac {A+B \tan (e+f x)}{(a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{5/2}} \, dx=-\frac {{\left (3 \, {\left (i \, A + B\right )} e^{\left (10 i \, f x + 10 i \, e\right )} - {\left (-23 i \, A - 13 \, B\right )} e^{\left (8 i \, f x + 8 i \, e\right )} + 10 \, {\left (11 i \, A + B\right )} e^{\left (6 i \, f x + 6 i \, e\right )} + 48 \, {\left (-i \, A - B\right )} e^{\left (5 i \, f x + 5 i \, e\right )} + 30 \, {\left (i \, A + B\right )} e^{\left (4 i \, f x + 4 i \, e\right )} + 48 \, {\left (-i \, A - B\right )} e^{\left (3 i \, f x + 3 i \, e\right )} + 5 \, {\left (-13 i \, A + 7 \, B\right )} e^{\left (2 i \, f x + 2 i \, e\right )} - 5 i \, A + 5 \, B\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} e^{\left (-3 i \, f x - 3 i \, e\right )}}{240 \, a^{2} c^{3} f} \]

input
integrate((A+B*tan(f*x+e))/(a+I*a*tan(f*x+e))^(3/2)/(c-I*c*tan(f*x+e))^(5/ 
2),x, algorithm="fricas")
 
output
-1/240*(3*(I*A + B)*e^(10*I*f*x + 10*I*e) - (-23*I*A - 13*B)*e^(8*I*f*x + 
8*I*e) + 10*(11*I*A + B)*e^(6*I*f*x + 6*I*e) + 48*(-I*A - B)*e^(5*I*f*x + 
5*I*e) + 30*(I*A + B)*e^(4*I*f*x + 4*I*e) + 48*(-I*A - B)*e^(3*I*f*x + 3*I 
*e) + 5*(-13*I*A + 7*B)*e^(2*I*f*x + 2*I*e) - 5*I*A + 5*B)*sqrt(a/(e^(2*I* 
f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1))*e^(-3*I*f*x - 3*I*e)/ 
(a^2*c^3*f)
 
3.9.42.6 Sympy [F]

\[ \int \frac {A+B \tan (e+f x)}{(a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{5/2}} \, dx=\int \frac {A + B \tan {\left (e + f x \right )}}{\left (i a \left (\tan {\left (e + f x \right )} - i\right )\right )^{\frac {3}{2}} \left (- i c \left (\tan {\left (e + f x \right )} + i\right )\right )^{\frac {5}{2}}}\, dx \]

input
integrate((A+B*tan(f*x+e))/(a+I*a*tan(f*x+e))**(3/2)/(c-I*c*tan(f*x+e))**( 
5/2),x)
 
output
Integral((A + B*tan(e + f*x))/((I*a*(tan(e + f*x) - I))**(3/2)*(-I*c*(tan( 
e + f*x) + I))**(5/2)), x)
 
3.9.42.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {A+B \tan (e+f x)}{(a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{5/2}} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate((A+B*tan(f*x+e))/(a+I*a*tan(f*x+e))^(3/2)/(c-I*c*tan(f*x+e))^(5/ 
2),x, algorithm="maxima")
 
output
Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 
3.9.42.8 Giac [F]

\[ \int \frac {A+B \tan (e+f x)}{(a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{5/2}} \, dx=\int { \frac {B \tan \left (f x + e\right ) + A}{{\left (i \, a \tan \left (f x + e\right ) + a\right )}^{\frac {3}{2}} {\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate((A+B*tan(f*x+e))/(a+I*a*tan(f*x+e))^(3/2)/(c-I*c*tan(f*x+e))^(5/ 
2),x, algorithm="giac")
 
output
integrate((B*tan(f*x + e) + A)/((I*a*tan(f*x + e) + a)^(3/2)*(-I*c*tan(f*x 
 + e) + c)^(5/2)), x)
 
3.9.42.9 Mupad [B] (verification not implemented)

Time = 9.54 (sec) , antiderivative size = 196, normalized size of antiderivative = 0.73 \[ \int \frac {A+B \tan (e+f x)}{(a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{5/2}} \, dx=\frac {\sqrt {\frac {a\,\left (\cos \left (2\,e+2\,f\,x\right )+1+\sin \left (2\,e+2\,f\,x\right )\,1{}\mathrm {i}\right )}{\cos \left (2\,e+2\,f\,x\right )+1}}\,\left (40\,A\,\sin \left (2\,e+2\,f\,x\right )+A\,\cos \left (2\,e+2\,f\,x\right )\,20{}\mathrm {i}+A\,\cos \left (4\,e+4\,f\,x\right )\,1{}\mathrm {i}-20\,B\,\cos \left (2\,e+2\,f\,x\right )-4\,B\,\cos \left (4\,e+4\,f\,x\right )-A\,45{}\mathrm {i}+4\,A\,\sin \left (4\,e+4\,f\,x\right )+B\,\sin \left (2\,e+2\,f\,x\right )\,10{}\mathrm {i}+B\,\sin \left (4\,e+4\,f\,x\right )\,1{}\mathrm {i}\right )}{120\,a^2\,c^2\,f\,\sqrt {\frac {c\,\left (\cos \left (2\,e+2\,f\,x\right )+1-\sin \left (2\,e+2\,f\,x\right )\,1{}\mathrm {i}\right )}{\cos \left (2\,e+2\,f\,x\right )+1}}} \]

input
int((A + B*tan(e + f*x))/((a + a*tan(e + f*x)*1i)^(3/2)*(c - c*tan(e + f*x 
)*1i)^(5/2)),x)
 
output
(((a*(cos(2*e + 2*f*x) + sin(2*e + 2*f*x)*1i + 1))/(cos(2*e + 2*f*x) + 1)) 
^(1/2)*(A*cos(2*e + 2*f*x)*20i - A*45i + A*cos(4*e + 4*f*x)*1i - 20*B*cos( 
2*e + 2*f*x) - 4*B*cos(4*e + 4*f*x) + 40*A*sin(2*e + 2*f*x) + 4*A*sin(4*e 
+ 4*f*x) + B*sin(2*e + 2*f*x)*10i + B*sin(4*e + 4*f*x)*1i))/(120*a^2*c^2*f 
*((c*(cos(2*e + 2*f*x) - sin(2*e + 2*f*x)*1i + 1))/(cos(2*e + 2*f*x) + 1)) 
^(1/2))